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Abstract

Model organisms subjected to sustained experimental evolution often show levels of phenotypic differentiation that
dramatically exceed the phenotypic differences observed in natural populations. Genome-wide sequencing of pooled
populations then offers the opportunity to make inferences about the genes that are the cause of these phenotypic
differences. We tested, through computer simulations, the efficacy of a statistical learning technique called the “fused
lasso additive model” (FLAM). We focused on the ability of FLAM to distinguish between genes which are differentiated
and directly affect a phenotype from differentiated genes which have no effect on the phenotype. FLAM can separate
these two classes of genes even with relatively small samples (10 populations, in total). The efficacy of FLAM is improved
with increased number of populations, reduced environmental phenotypic variation, and increased within-treatment
among-replicate variation. FLAM was applied to SNP variation measured in both twenty-population and thirty-
population studies of Drosophila subjected to selection for age-at-reproduction, to illustrate the application of the

method.
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Introduction

In his classic work on the genetic basis of evolutionary change,
Lewontin (1974) laid out the important goal of understanding
the relationship between genes and phenotypes, across the
entire genome. With the advent of genome-wide sequencing,
evolutionary biology is now on the threshold of achieving the
goal set out by Lewontin.

Most traits of interest to evolutionary biologists, from vi-
ability to physiological performance, are quantitative traits
potentially affected by many genes. Quantitative trait loci
(“QTL”) mapping was an early attempt to identify the genetic
basis of quantitative traits (Lander and Botstein 1989), but its
chief strength was in identifying genomic regions of moderate
to large effects that were differentiated between two inbred
lines. Thus, the method was not generally applicable. Now
that we can readily sequence the genomes of individuals from
outbred populations, as well as sequence pooled samples of
multiple individuals from such populations, we have more
powerful alternative methods. There are now sophisticated
linear mixed effects models for predicting phenotypes when
genomes of large samples of individuals are available
(Meuwissen et al. 2001; de los Campos et al. 2013; Speed
and Balding 2014; Weissbrod et al. 2016).

One advantage of using model organisms subjected to sus-
tained experimental evolution is that the levels of phenotypic
differentiation can dramatically exceed the phenotypic differ-
ences observed in natural populations (Garland and Rose
2009). These strong signals should in principle make it
easier to determine the genetic basis of these differences.

The disadvantage is that it is currently costly to sequence
many individuals from numerous populations of model organ-
isms like fruit flies. Instead, genetic data often comes in the form
of pooled sequence data (“Pool-Seq”), which allows us to esti-
mate population-wide allele frequencies. Pool-seq coupled with
experimental evolution makes the unit of observation an entire
population. In many laboratories, however, there are often only
three control and three selected populations available for
analysis.

In addition to having a very small number of independent
whole-population observations, adaptation in response to
any experimental evolution regime may entail multiple phe-
notypes changing due to the evolution of many loci across
the genome. Thus, determining the genetic foundations of a
specific phenotype is going to be more complicated than
simply looking for all differentiated genes arising in a partic-
ular experimental evolution paradigm. In developing techni-
ques for analyzing pooled sequence genome-wide data, we
need to sift out differentiated but noncausal loci when infer-
ring the genes that affect a particular phenotype.

We test a new method called the “fused lasso additive
model” (or “FLAM,” Petersen et al. 2016), determining its suit-
ability for inferring which loci are causally related to specific
types of phenotypic differentiation produced by experimental
evolution. We simulate multiple populations separated into
groups with a highly differentiated phenotype under the con-
trol of loci with differing effects on the phenotype. The genet-
ics for each simulated population also include loci that are
highly differentiated, but do not affect the phenotype of
interest, as well as a large number of undifferentiated loci.
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The basic question we address here is how well the FLAM
method does at identifying causal loci and sorting out non-
causal loci. Although phenotype prediction is not a primary
concern, we also look at the ability of the method to predict
phenotypes from genomic data, so that we can compare this
technique to others which also use extensive individual ge-
nomic data. Finally, we apply the method to a group of 30
Drosophila populations that have been adapted to environ-
ments with different ages-at-reproduction, populations for
which we have both genome-wide single nucleotide polymor-
phism (SNP) data as well as phenotypic data.

New Approaches

Laboratory natural selection often results in large scale genetic
and phenotypic differentiation. However, it is rare that only a
single phenotype changes. While identifying the genetic dif-
ferences between these differentiated populations is relatively
straightforward, identifying which genes affect which pheno-
types is more challenging.

Here, we present a statistical learning tool called the FLAM.
This technique minimizes cross-validation error to find a sub-
set of genomic SNPs which can be used to predict pheno-
types. Since the penalty function that is minimized by FLAM
does not produce a unique solution, we probe these solutions
by repeating the minimization process from 100 different
starting places and then look for those SNPs that appear
most often across all FLAM results. We call these SNPs “the
sparse set.” To be included in the sparse set, a SNP must
appear with a frequency of k x 100% of the most frequent
SNP, where k varies from 0 to 1.

Results

The results for simulated SNP databases were generated with
five population-sample sizes: 6, 10, 20, 40, and 60. A single
phenotype and 2,000 SNPs were measured in each popula-
tion. For each of these cases, we created 100 independent
databases of phenotypes and genetic data. Although FLAM
will eliminate loci that don’t improve the cross-validation
error, it is best if some filtering can be done prior to the
FLAM analysis. In all the simulations described below, we
did this by comparing the allele frequencies in the replicate
populations with the lowest phenotypic values to those in the
replicated populations with the highest and then only includ-
ing those loci that show significant differences after applying
the Benjamini—Hochberg multiple testing criteria (Benjamini
and Hochberg 1995). Significant differences in allele frequen-
cies were determined by the Cochran—Mantel-Haenszel test
(Landis et al. 1978).

Effects of Sample Size and Phenotypic Variation

In the simulations, databases were constructed from the lin-
early increasing allele frequencies (fig. 1a and b) and k was set
to 0.5. The ability of FLAM to detect causative loci increases in
proportion to the total number of populations (fig. 2). The
simulations incorporate a “phenotypic variance” that is due
to uncontrolled environmental factors and experimental
techniques, in addition to the part of the variance that is

due to genetic differentiation. When this phenotypic variance
is low, the frequency of noncausative differentiated loci is also
kept low (fig. 2b). With increasing phenotypic variance, the
ability of FLAM to eliminate these two noncausal classes of
loci is reduced (fig. 2a). We explore why this might be so in
the next section. The neutral loci are mostly eliminated by the
presorting tests and the few neutral loci that remain are then
often eliminated by FLAM.

There are no substantial differences between the strong,
moderate, and weak causal loci with respect to their detec-
tion (fig. 2). While this seems anomalous, it can be under-
stood by recalling that the pattern of allele frequency change
among all three groups is exactly the same. Thus, weak caus-
ative loci are picked up because their allele frequency change
is in the same direction as the strong loci which are largely
controlling the phenotypic changes. Later we explore the
effects of causative loci that have allele frequencies that
change with different patterns.

Within-Regime Genetic Differentiation

The only way that FLAM can distinguish the causal loci from
the noncausal differentiated loci is if there is between-
replicate genetic variation within well-differentiated groups
of populations that leads to small differences in average phe-
notypes among the replicate populations of such groups. To
illustrate this idea, we created another set of twenty-
population databases which had the same level of differenti-
ation between the high and low populations, but all popula-
tions within the high phenotype group had the same mean
allele frequency, and likewise for the low phenotype group.
Without between-replicate genetic variation within the major
groupings, FLAM is unable to distinguish the causal from the
noncausal loci (fig. 3).

Different Causal Patterns of Allele Frequency Variation
In the previous simulations, allele frequencies changed in the
same fashion across subpopulations in the strong, moderate,
and weak causal loci. In a second set of simulations, we let one
of the causal groups have effects following the plateau pat-
terns shown in figure 1c and d, whereas the remaining causal
loci retained the patterns shown in figure 1a and b. When the
strong or moderate causal loci show plateau patterns, they
are still picked up in the sparse lists (fig. 4a and b), but the
weak loci appear no more often than the differentiated non-
causal loci (fig. 4c). Presumably the weak causal loci have such
a minor effect on the phenotypic variation that FLAM can’t
detect their contribution, when their causal patterns differ
from those of the strong and moderate loci. In all cases, the
noncausal differentiated loci appear in the sparse lists more
often when the causal loci have different patterns relative to
other causal loci (fig. 4), compared with cases when they all
change in the same fashion (fig. 2).

Sparse-List Selection Criteria

All the previous simulations used the criterion that loci in the
sparse list must exceed kC,,,.x where k=0.5 and C,,,,, is the
count of the most frequent SNP among the 100 simulations.
We next studied the effects of varying k by allowing it to range
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Fic. 1. Allele frequency variation used for computer simulations. Simulations used 6, 10, 20, 30, or 60 total populations. A “20-60" above the line
means that these allele frequencies were used in simulations with 20, 30, and 60 populations and so on. (a) and (b) are allele frequencies used when
all the causative loci show a linear increase in allele frequencies from subpopulation 1 to 10. (c) and (d) show patterns that were used in
combination with the linear patterns to explore the effects of allele frequencies at causative loci changing in different patterns across the

subpopulations.

over the values 0.5, 0.4, 0.3, and 0.2. We applied these criteria
to the simulated results of figure 2b, but only show the results
for the strong causal loci and differentiated noncausal loci
(fig. 5). As k decreases, the frequency of the strong causal loci
in the sparse list increases (fig. 5a). But the frequency of in-
correctly inferring the causal involvement of differentiated
noncausal loci also increases (fig. 5b).

When the strong causal loci had a plateau in allele fre-
quencies, there was a pronounced increase in differentiated
noncausal loci in the sparse list (fig. 4a). For that reason, we
ran that simulation for various values of k (fig. 6). In this case,
we see some benefits of decreasing k with large databases in
conjunction with pronounced increases in the incorrect in-
clusion of differentiated noncausal loci. This is because, with
60 simulated populations, we are getting most of the causal
loci even with k= 0.5.

FLAM versus Hypothesis Tests

After prescreening genes for differentiation in the twenty-
population simulations, we did regressions of phenotype on
allele frequency level at each locus, testing for slopes that were
significantly different from zero. The P-values for each of these
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tests were saved and a Benjamini—-Hochberg criteria was ap-
plied to determine which loci showed significant differences
(see for instance Lovell et al. 2016). We did hypothesis testing
with the twenty-population SNP simulations and linear allele
frequency increases, using a 5% false discovery rate. With
these simulated databases, hypothesis testing included
100% of causal loci in the sparse sets as well as 100% of the
noncausal, differentiated loci. Thus, these hypothesis tests
were unable to separate causal loci from differentiated non-
causal loci.

Linkage
Genes that are tightly linked to causal loci would be expected
to show allele frequency variation that closely follows the
variation at the linked, causal locus. FLAM would be expected
to include such tightly linked loci in the sparse lists. However,
as the correlation in allele frequencies between the causal and
noncausal linked locus decay, with increasing distance along a
chromosome, we would anticipate that FLAM could start to
differentiate such loci.

We created databases of 20 populations with varying levels
of allele frequency correlations between the causal and
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Fic. 2. The number of loci in the final sparse set for the causative loci
and noncausative loci as a function of the total number of popula-
tions in the database. There are three categories of causative loci,
strong, moderate and weak based on their phenotypic effects and
two categories of noncausative loci, differentiated and neutral. The
phenotypic standard deviation was varied as (a) 0.05 and (b) 0.005.
The bars are 95% confidence intervals based on the 100 independent
databases.

noncausal differentiated loci (see Materials and Methods).
The simulation results (fig. 7) show a gradual decline in the
inclusion of noncausal differentiated loci as the correlation
with causal loci declines. The rate of inclusion drops to levels
near those of independent loci at correlations produced by
linkage disequilibrium of <0.40 (fig. 7). Estimates of linkage in
laboratory populations of Drosophila melanogaster (Teotdnio
et al. 2009) suggest loci with correlations of 0.4 or less may
encompass 10-100 kb. Accordingly, when analyzing data in
the next section SNPs were partitioned into 50 kb regions.

Drosophila Data

Analysis of the genome-wide data structured in 50 kb SNP
units yielded 194 SNP’s. We first applied FLAM to a composite
phenotype determined from a principal component analysis
of pupal and adult development time, early and late fecun-
dity, as well as adult mortality. We also applied FLAM to each
phenotype individually. We applied BCD optimization to 100
permuted versions of the database. From these results, we
assembled sparse lists based on k = 0.2, 0.3, 0.4, and 0.5. Using
the six phenotypes with the 20 population database we found
a total of 53 SNPs using at least one of the criteria (fig. 8).

We identified 31 SNPs using the 30 population database for
the pupal and adult development time phenotypes (fig. 9).

No SNP appears on the sparse lists of all phenotypes.
However, there is a good deal of sharing between some phe-
notypes. For instance, pupal and adult development time
share six SNPs in the 20-population database and seven in
the 30-population database (figs. 8 and 9). But adult fecundity
and adult mortality share only one SNP in common, even
though between them there are a total of 23 SNPs in their
sparse lists (fig. 8). Pupal development time in the 20 and 30
population databases share two SNPs in common. Adult de-
velopment time in the 20 and 30 population databases share
four SNPs in common. The 10 B populations have develop-
ment times that are intermediate relative to the 10 A and 10
C populations. Thus, if FLAM included some noncausal dif-
ferentiated loci in the 20 population analysis, these would be
expected to be eliminated in the 30 population database
analysis if their allele frequencies were not intermediate in
the B populations.

We studied how well FLAM does at predicting phenotypes
using the following method. Only loci from the k = 0.5 sparse
list were used. We made training sets of 16 populations and
predicted the phenotypes of the remaining four populations
for the twenty-population databases. For the thirty-
population databases, we trained with 8 A’s, 8 B's and 8 C’s,
and then predicted the phenotypes of the remaining sample
populations. We created all possible sets under the constraint
that no population was used in the prediction set more than
once. For the compound phenotype developed for the
twenty-population data, the correlation between the pre-
dicted phenotype and the observed phenotypes was 0.96.
In the twenty-population databases, pupal development
time, adult development time, early fecundity, adult fecundity
and adult mortality had predicted versus observed correla-
tions of 0.94, 0.97, 0.82, 0.76, and 0.94, respectively. In the
thirty-population database, the correlation for pupal devel-
opment time was 0.90 and for adult development time 0.96.

Discussion

We have focused on a special kind of genetic material: exper-
imentally evolved populations that have been exposed to
different selection regimes for long periods of time and
have consequently evolved large-scale genomic and pheno-
typic differentiation. Evidence from computer simulations has
shown that FLAM can effectively sort out those loci that are
differentiated and have a causal effect on a phenotype versus
those that are differentiated but do not have a causal effect.
The effectiveness of FLAM increases as 1) the number of
independent populations increases, 2) the levels of within-
treatment genetic variation increases, and 3) the level of non-
genetic phenotypic variation between populations decreases.

The method will not identify all causative loci, even when
the three conditions described above are relatively favorable.
We also expect that any causative locus that does not show
variation among replicate populations within selection re-
gime will not be detected by FLAM—since it will have all
the characteristics of a differentiated noncausal locus. In
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Fic. 3. The effects of subpopulation variation. Both panels show box plots of the number of loci in the final sparse sets among the 100 independent
databases. The simulation shown in the right panel was based on a 20-population SNP database with ten populations that have the same high allele
frequency and ten populations having the same low allele frequency. The left panel exhibits variation within the high and low groups. In the
absence of replicate population variation, FLAM is unable to effectively sort out the noncausal differentiated loci from the causative loci.

particular, causal loci that become fixed in all replicate pop-
ulations due to selection will be less likely to be detected.
[However, no such loci are found in the experimental material
that we have produced in our laboratory (e.g. Graves et al.
2017).] Likewise, loci that have a relatively weak effect on the
phenotype and have causal patterns that are substantially
different from those of loci that have strong phenotypic
effects will not be detected by FLAM.

The most common setting for experimental evolution
studies is to have a replicated set of control populations
and a replicated set of experimental populations. However,
if multiple selection regimes exist, resulting in intermediate
phenotype values, we would expect this to facilitate FLAM'’s
ability to sort out the causal from the differentiated noncausal
loci. That is because it is less likely that the intermediate
populations will follow the same sort of intermediate differ-
entiation for noncausal loci. In effect, the intermediate pop-
ulations are serving a similar role to replicate populations that
show within-treatment phenotypic variation due to genetic
differentiation.

Because of the large differentiation in the A and C
Drosophila populations of Burke et al. (2016) and Graves
et al. (2017) we studied here, FLAM does an exceptionally
good job of predicting phenotypes in test populations not
used to train the FLAM parameters. The correlation between
predicted and observed phenotypes was typically well over
0.9. Speed and Balding (2014) applied their best linear unbi-
ased prediction method to a variety of disease disorders in the
Wellcome Trust Case Control Consortium; they obtained
cross-validation correlations of around 0.3. Those data con-
sisted of nearly 6,000 people. Makowsky et al. (2011), using

similar models, could only explain ~15-36% of the variation
in human height, which has a heritability of ~0.8. We believe
the superior predictive power of FLAM applied to laboratory
selected populations is due to the very large phenotypic dif-
ferentiation that can be achieved by experimental evolution.

Studies of geographically differentiated populations of
Drosophila and laboratory selected populations have used a
variety of standard statistical tests and regression analyses to
infer causal loci (Bochdanovits et al. 2003; Griffin et al. 2017).
None of these studies has looked seriously at how effective
these methods are. As we show in this study, standard regres-
sion analysis, even when it uses methods to control for false
discovery, does a very poor job of differentiating causal from
noncausal loci.

Materials and Methods

Simulated SNP Frequencies

The simulated populations are characterized by SNP frequen-
cies at genetic markers that are directly responsible for a
complex phenotype, here called causative loci, as well as
loci that do not affect the phenotype, called noncausative
loci. We further define three subtypes of causative loci: those
with strong, moderate, or weak effects on the phenotype.
There are also two subtypes of noncausative loci for a partic-
ular phenotype: those that show genetic differentiation be-
tween selection regimes and those that do not. The
differentiated but noncausative loci are expected to exist in
laboratory selected populations, because it is difficult to con-
trive experimental evolution paradigms that only select on a
single phenotype. Such differentiated noncausative loci pre-
sent a key challenge to statistical techniques that are used to
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Fic. 4. The number of loci in the final sparse set for the causative loci
and noncausative loci as a function of the total number of popula-
tions in the database. The phenotypic standard deviation was 0.005 in
all cases. The plateau patterns of allele frequency variation (fig. 1c and
d) were used for the (a) strong causal loci, (b) moderate causal loci,
and (c) weak causal loci.

infer which loci are causative for a particular type of pheno-
typic differentiation.

For each population-i (i=1, .. .,n), we let the population
allele frequency for the three categories of causative loci at
locus-j (j=1...ng n,, orn,) be p; ;. Coverage over popula-
tions and loci varies, so for each locus we treat coverage as a
random variable, N; j» which we sample from a normal distri-
bution with a mean of 76 and standard deviation of 16 based
on our observations in the 10 A and C-type populations
(described later). To avoid extremely small values of N; j» we
truncate the lower end of the distribution to 29, the lowest
average coverage observed in any of the populations. To gen-
erate a synthetic database, we then chose sample allele
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Fic. 5. The number of loci in the final sparse set for the (a) strong
causative loci and (b) noncausative loci as a function of the total
number of populations in the database and various values of k
(expressed as a percent). These results were based on the simulations
run in figure 2b.

frequencies, p;; (s=1...n,+ny,+n,), at the ten strong,
moderate, and weak loci as B(N; j» bij) where j= (s - T modulo
10) + 1 (when ny=n,,, = n,, = 10).

The phenotype of the population depends on the popu-
lation allele frequencies, p; ;, not the sample allele frequencies.
Thus, the phenotype (P;) in population-i is,

Pi=( apis+ > ampis+ > aupis

SEN; SEN, sEN,,
-1
(asns + amhm + awny) ™ + &

where ¢j is a measure of environmental noise that was as-
sumed to have a normal distribution with a mean of 0 and
standard deviation of 0.005. The effects of these loci on the
phenotype were set as a, (=1), a,,, (=0.5), and a,, (=0.1) for
strong, moderate and weak loci respectively. We set
ny=n,,=n,, = 10.

The total number of populations in these simulations var-
ied from 6 to 60 (fig. 1a and b). In one set of simulations, allele
frequencies at the causative loci were assumed to increase
linearly over the subpopulations (fig. 1a and b). In a second
set of simulations, we allowed allele frequencies in either the
strong, moderate, or weak causative loci to have a plateau-
shaped change in allele frequencies (fig. 1c and d). The non-
causative differentiated loci showed the same range of allele

Downl oaded fr @0t ps: // acadeni c. oup. conl mbe/ arti cl e- abst r act / 35/ 8/ 2085/ 5026092
by University of California, Irvine user
on 20 August 2018


Deleted Text: .
Deleted Text:  
Deleted Text: . 
Deleted Text: &thinsp;
Deleted Text: . 
Deleted Text: -
Deleted Text: &epsiv;
Deleted Text: -

Genome-Wide Mapping of Gene-Phenotype Relationships - doi:10.1093/molbev/msy113

MBE

@) Strong causal loci

(b)

Number of Loci
>

Differentiated non-causal loci

0 T T T T T T
0 10 20 30 40 50 60 70

Number of Populations

Fic. 6. The number of loci in the final sparse set for the (a) strong
causative loci and (b) noncausative loci as a function of the total
number of populations in the database and various values of k
(expressed as a percent). These results were based on the simulations
run in figure 4a.
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Fic. 7. The number of loci in the final sparse set for the strong caus-
ative loci (solid circle) and the differentiated, noncausative loci (open
diamond) as a function of correlation (linkage) between these loci.

frequencies as the causative loci, however the subpopulation
designations were randomly shuffled. As an example, in the
20 population simulations the population allele frequencies
at the causative loci in the 10 populations with low
phenotypic values were, pc= (045, 0.46, 047, 0.48, 0.49,
050, 0.51, 052, 053, 0.54). Allele frequencies at the
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3R s7s1sss|

3R 20598994

3R 20607003

3R 20677283

20608163 [

1987591
2145860 [
2741972
2822216
4354063
4839052
5346401
sso0724 [
6529303
6766779
8218116

10639538

10652056 [

16352150

19129635 [

19721311

22961551 [ .

Fic. 8. The sparse lists for the 20 A and C Drosophila populations with
SNP’s at 50 kb intervals. The phenotypes are compound phenotype
(CP), pupal development (PD), adult development (AD), early fecun-
dity (EF), adult fecundity (AF), and adult mortality (AM). The color
codes indicate which criteria the SNP has satisfied: red (k = 0.5), red

and orange (k= 0.4), red, orange, and light blue (k=0.3) and red,
orange, light blue and dark blue (k =0.2).

w
=

' ol

X X X X X X X X X X X X X X X X X

noncausative loci, pyc, were based on a random sample with-
out replacement from pc. Thus, the correlation between pc
and pyc would be 0.
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30 populations

SNP PD_ AD
2L 4265950
2 4331832
2L 5894963
2L 5994543
2L 6090933
2 6112731
2L 9801815
2L 20801145
2R 8569937
R 11846148
2R 11932032
2R 18626850.
R 21786327
3L 684844
3L 719871
3L 774317
3L 7315037
3L 14651658
3L 19244899
3L 21009121
3R 5205264
3R 14139656
3R 21768852
R 22114121
3R 29608163
X 1987591
X 2073341
X 6429797
X 8218116
X 16270729
x 19721311 [

Fic. 9. The sparse lists for the 30 A, B, and C Drosophila populations.
The color codes are the same as figure 8.

For two bi-allelic linked loci, with the most common allele
having frequencies of p, and g, the allele frequency correla-
tion between these two loci can be represented as
D[p+(1-p1)g4(1- c:h)]'v2 where D is the linkage disequilibrium
coefficient. Thus, to study the effects of linkage we manipu-
lated the correlation between pc and pnc. The allele
frequency vectors (table 1) retained the same allele frequen-
cies as the causative loci, but the arrangement among the
subpopulations varied with the specific distributions shown
in table 1.

The phenotypic differentiation of the simulated high-
phenotype and low-phenotype populations using a sample
of 20 populations was substantial (fig. 10), but not unlike the
levels we see in our laboratory populations of Drosophila (vid.
Burke et al. 2016). For the other simulations, the phenotypic
variation was proportional to the mean allele frequencies. The
mean phenotype within each population showed low levels
of variation due to sampling effects (fig. 11). The simulation

also included 10 differentiated, noncausative loci. The allele
frequencies at these loci were the same as those of the caus-
ative loci, although the subpopulation variation was uncorre-
lated with the variation at the causative loci. There were an
additional 1,960 noncausative loci with a mean allele fre-
quency of 0.9.

Statistical Inference with FLAM

In both our simulated and real-world data, we assume that
the SNP frequency across the m loci has been measured in n
independent  populations along with n-phenotypes,
P=(P,,P, ... P,). At locus-j, for instance, we assume that
the allele frequencies can be ordered as, p; < p,; < ... <p,;.
The regression relationship, E[P,~|f9,-j] =0, of the FLAM
(Petersen et al. 2016) will yield estimates of the parameter
vector, 0;= (0 . .., 0,) subject to,

minimize 1

—|[P =62 + 2||D0|| (1)
e 3= i+ 2ol
where
1T =1 0 0
0 1 —1 0
D:
0 O0.. 1T —1

(Petersen et al. 2016).

Large values of the tuning parameter /. will tend to make
|H,-_1,j— 0; j| equal to zero. Hence, the final function will be a
series of steps with jumps or knots that are adaptively chosen.

Over all loci, we add to the optimization problem in equa-
tion (1) a group lasso penalty function that will encourage
whole 0; vectors to be zero and thus serve to eliminate unin-
formative loci yielding,

minimize

12P=S" 0
0o € R, 0, € R", 1<j<m /2 2,21 !

T+ Y oMo+ (=02 3" |0

where M; is a matrix that orders the values of p ; from smallest
to largest. Equation (2) adds a second tuning parameter o,
which ranges from 0 to 1 (Petersen et al. 2016). The R-func-
tion, flamCV (in the flam package), will search for the best 4
based on the cross-validation error rates for a given value of o..
In our analyses, we used a grid of 19 «-values to find the best
model («=0.05, 0.1,. . .,0.95).

The solutions to (2) are characterized by a sparse set of loci
where [|6;, # 0. Although there is a global minimum for the
objective function (2), there is not a unique solution. One
method for finding this minimum is called block coordinate
descent (“BCD,” Friedman et al. 2007). While it is fast and
robust compared with other methods, the sparse set of loci
that are identified by BCD depend on the arrangements of
loci in the matrix of independent variables.

— 001> ()
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Table 1. The Allele Frequency Vectors Used to Study the Effects of Linkage in Twenty Population Simulations.

Loci Correlation Phenotype Allele Frequencies
Causative Low (0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54)
High (0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94)
Noncausative 0.224 Low (0.49, 0.5, 0.51, 0.52, 0.45, 0.46, 0.47, 0.48, 0.53, 0.54)
High (0.89, 0.9, 0.91, 0.92, 0.85, 0.86, 0.87, 0.88, 0.93, 0.94)
Noncausative 0.394 Low (0.49, 0.5, 0.52, 0.45, 0.46, 0.48, 0.47, 0.53, 0.51, 0.54)
High (0.89, 0.9, 0.92, 0.85, 0.86, 0.88, 0.87, 0.93, 0.91, 0.94)
Noncausative 0.578 Low (0.48, 0.49, 0.5, 0.45, 0.46, 0.47, 0.53, 0.54, 0.51, 0.52)
High (0.88, 0.89, 0.9, 0.85, 0.86, 0.87, 0.93, 0.94, 0.91, 0.92)
Noncausative 0.673 Low (0.48, 0.49, 0.5, 0.45, 0.46, 0.47, 0.51, 0.52, 0.53, 0.54)
High (0.88, 0.89, 0.9, 0.85, 0.86, 0.87, 0.91, 0.92, 0.93, 0.94)
Noncausative 0.903 Low (0.47, 0.48, 0.45, 0.46, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54)
High (0.87, 0.88, 0.85, 0.86, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94)

The correlation column reports the correlation coefficient between the noncausative loci and the causative loci in the same phenotype class.

08-

Phenotype

06-

04-

High

Low

Population

Fic. 10. Box plots of the phenotypic distribution in the 10 high and 10 low populations used in the 20 population simulations. Phenotypes are

based on SNP frequencies.

We identified causative loci with the following algorithm.
Find a solution to (2) using BCD and save the sparse set. Then
permute the columns of the matrix of independent variables
and solve (2) again. Repeat the permutation and solution
steps 100 times. Enumerate the frequency of occurrence of
each SNP among these 100 sparse sets. Let the frequency of
the most common SNP among the 100 set be C,,,,,. Identify as
the causative loci only those that occur greater than kG,
where k = 0.2, 0.3, 0.4, or 0.5. We present evidence supporting
this rule in the Results section.

SNP Data

Read Mapping

For this analysis, we used the genome-wide SNP data previ-
ously published in Graves et al. (2017). This data set contains
pooled lllumina paired-end sequence data from 30 experimen-
tally evolved D. melanogaster populations: ACO;_s, AO;_s,
Bi_s, BO;_s, CO;_s, and nCO;_s. (See Graves et al. 2017 for
extraction details.) Raw fastq files were obtained and mapped
to the D. melanogaster reference genome (version 6.14) using

bwa mem (BWA version 0.7.8) with default settings (Li and
Durbin 2009). The resulting SAM files were filtered, sorted, and
converted to BAM files using the view and sort commands in
SAMtools (Li et al. 2009). We only selected reads mapped in
proper pairs with a minimum mapping quality of 20. The
rmdup command in SAMtools was then used to remove po-
tential PCR duplicates. As each population in Graves et al.
(2017) was sequenced twice, there were two bam files corre-
sponding to each population at this stage. BAMtools was used
to combine pairs of BAM files corresponding to the same
populations. The 30 resulting BAM files were then combined
into a single mpileup file using SAMtools. This mpileup file was
then further converted to a “synchronized” file, a format that
contains allele counts for all bases in the reference genome and
for all populations being analyzed, using the PoPoolation2
software package (Kofler et al. 2011). Lastly, RepeatMasker
4.0.3 (http://www.repeatmasker.org) was used to create a gff
of high repetitive regions found in the 6.14 release of the
D. melanogaster reference genome. These regions were then
removed from our sync file once again using PoPoolation2.
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Fic. 11. Box plots of phenotypic variation in the 10 subpopulations within the low phenotype group shown in figure 10 due to allele frequency

sampling variation and environmental variation.

Identifying Candidate Regions of the Genome

We only considered biallelic sites and required each site to
have coverages between 20X and 200X in each of the 30
populations. We also required each site to have a minimum
minor allele frequency of 2% across all 30 populations. All sites
failing to meet these criteria were discarded. To test for SNP
differentiation, we used the Cochran-Mantel-Haenzel
(CMH) test as implemented in PoPoolation2. CMH tests
were performed between the 10 A-type populations
(ACO;_5 and AO;_5) and 10 C-type populations (CO;_g
and nCO;_s) at all sites meeting our SNP calling criteria.
Populations were paired based on treatment and replicate
number (e.g. ACO,; was paired with CO;, AO; with nCO,,
etc.). To correct for multiple comparisons, genetic drift, and
sampling, we used the permutation approach featured in
Graves et al. (2017). Briefly, we randomly assigned population
to one of two groups, and then performed CMH tests at each
polymorphic site in the shuffled data set to generate null
distributions of P-values. We did this 1,000 times, and each
time we recorded the smallest P-value generated. We then
used the quantile function in R to establish a significance
threshold that defines the genome-wide false-positive rate,
per site, at 5%. This process resulted in a significance threshold
of 1.95 x 10~ ", Using this significance threshold, we identi-
fied a total of 4,211 candidate SNPs between the A-type and
C-type populations spread out across the five major chromo-
some arms.

Next, we identified 50 kb regions based on our list of 4,211
candidate SNPs. For the 50 kb candidate regions, we first di-
vided each chromosome arm into 50 kb windows. All win-
dows containing <3 candidate SNPs were discarded. We then
went through each of the remaining windows, and recorded
the position in each window with the smallest P-value from

our CMH tests. This resulted in a list of 194 positions repre-
senting the 194 50 kb windows that met our criteria. These
positions and their associated SNP frequencies were then
used as inputs in our FLAM analysis.

Phenotype Data
Phenotypes were measured on individuals from 20 popula-
tions that varied by their age-of-reproduction. Ten popula-
tions were reproduced at 10 days of life (measured from egg).
Five of these populations are called ACO and five AO. Their
historical relationship is summarized in Burke et al. (2016).
Another ten populations were reproduced at 28 days: five are
called CO and five nCO (Burke et al. 2016). We used five
different phenotypes that show substantial differentiation
between the A and C type populations: egg-to-pupa devel-
opment time, egg-to-adult development time, fecundity at
264 h of life (measured from egg), fecundity at adult age
27days and adult mortality at age 16days (Burke et al.
2016). We combined these five phenotypes into a single com-
pound phenotype using the first principal component de-
rived from centered and scaled values of the five
phenotypes and the R program prcomp (R Core Team 2015).
We also analyzed a group of 30 populations that included
the 10 A, 10 C, and 10 B populations. The B populations
reproduce at day 14 of life. They show pupal and adult de-
velopment times that are intermediate to the A and C pop-
ulations. FLAM was used with these 30 populations to infer
causal SNPs for pupal and adult development times.
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